Dual divergence estimators and tests: Robustness results
نویسندگان
چکیده
The class of dual φ-divergence estimators (introduced in Broniatowski and Keziou (2009) [6]) is explored with respect to robustness through the influence function approach. For scale and location models, this class is investigated in terms of robustness and asymptotic relative efficiency. Some hypothesis tests based on dual divergence criterions are proposed and their robustness properties are studied. The empirical performances of these estimators and tests are illustrated by Monte Carlo simulation for both noncontaminated and contaminated data.
منابع مشابه
Model Selection Criteria Using Divergences
In this note we introduce some divergence-based model selection criteria. These criteria are defined by estimators of the expected overall discrepancy between the true unknown model and the candidate model, using dual representations of divergences and associated minimum divergence estimators. It is shown that the proposed criteria are asymptotically unbiased. The influence functions of these c...
متن کاملRobust Tests Based on Minimum Density Power Divergence Estimators and Saddlepoint Approximations
The nonrobustness of classical tests for parametric models is a well known problem and various robust alternatives have been proposed in literature. Usually, the robust tests are based on first order asymptotic theory and their accuracy in small samples is often an open question. In this paper we propose tests which have both robustness properties, as well as good accuracy in small samples. The...
متن کاملInfluence analysis of robust Wald-type tests
We consider a robust version of the classical Wald test statistics for testing simple and composite null hypotheses for general parametric models. These test statistics are based on the minimum density power divergence estimators instead of the maximum likelihood estimators. An extensive study of their robustness properties is given though the influence functions as well as the chi-square infla...
متن کاملMinimum ϕ -Divergence Estimation in Constrained Latent Class Models for Binary Data.
The main purpose of this paper is to introduce and study the behavior of minimum ϕ -divergence estimators as an alternative to the maximum-likelihood estimator in latent class models for binary items. As it will become clear below, minimum ϕ -divergence estimators are a natural extension of the maximum-likelihood estimator. The asymptotic properties of minimum ϕ -divergence estimators for laten...
متن کاملEstimation and Tests for Models Satisfying Linear Constraints with Unknown Parameter
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. Several statistical examples and motivations are given. These procedures extend the empirical likelihood (EL) method and share common features with generalized empirical likelihood (GEL). We treat the problems of existence and characterization of the diver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 102 شماره
صفحات -
تاریخ انتشار 2011